New Oscillation Results From MiniBooNE

Žarko Pavlović

Los Alamos National Laboratory

Outline

- Introduction
- MiniBooNE exp.
- Data analysis
- Results
- Future outlook
- Conclusion

A. A. Aguilar-Arevalo¹², C. E. Anderson¹⁵, S. J. Brice⁶, B. C. Brown⁶, L. Bugel¹¹, J. M. Conrad¹¹, Z. Djurcic², B. T. Fleming¹⁵, R. Ford⁶, F. G. Garcia⁶, G. T. Garvey⁹, J. Mirabal⁹, J. Grange⁷, J. A. Green^{8,9}, R. Imlay¹⁰, R. A. Johnson³, G. Karagiorgi¹¹, T. Katori^{8,11}, T. Kobilarcik⁶, S. K. Linden¹⁵, W. C. Louis⁹, K. B. M. Mahn⁵, W. Marsh⁶, C. Mauger⁹, W. Metcalf¹⁰, G. B. Mills⁹, C. D. Moore⁶, J. Mousseau⁷, R. H. Nelson⁴, V. Nguyen¹¹, P. Nienaber¹⁴, J. A. Nowak¹⁰, B. Osmanov⁷, Z. Pavlovic⁹, D. Perevalov¹, C. C. Polly⁶, H. Ray⁷, B. P. Roe¹³, A. D. Russell⁶, M. H. Shaevitz⁵, M. Sorel^{5*}, J. Spitz¹⁵, I. Stancu¹, R. J. Stefanski⁶, R. Tayloe⁸, M. Tzanov⁴, R. G. Van de Water⁹, M. O. Wascko^{10†}, D. H. White⁹, M. J. Wilking⁴, G. P. Zeller⁶, E. D. Zimmerman⁴

(The MiniBooNE Collaboration)

MiniBooNE motivation

- LSND experiment
- Stopped pion beam

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

- Excess of $\overline{\nu}_{_{e}}$ in $\overline{\nu}_{_{\mu}}$ beam
- \overline{v}_e signature: Cherenkov light from e^+ with delayed n-capture

LSND signal

Assuming two neutrino oscillations

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)$$

= 0.245 ± 0.067 ± 0.045 %

 Can't reconcile LSND result with atmospheric and solar neutrino using only 3 Standard Model neutrinos – only two independent mass splitings

Sterile neutrinos

- Can have only 3 light active neutrinos
- 3 active neutrinos +
 1 sterile neutrino

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}\sin^{2}(1.27 \Delta m_{41}^{2}L/E)$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} (1.27 \Delta m^{2} L/E)$$

 Model predicts same oscillation probability for neutrinos and antineutrinos

MiniBooNE experiment

- Similar L/E as LSND
 - MiniBooNE ~500m/~500MeV
 - LSND ~30m/~30MeV
- Horn focused neutrino beam (p+Be)
 - Horn polarity → neutrino or anti-neutrino mode
- 800t mineral oil Cherenkov detector

Neutrino flux

Neutrino mode

$$\begin{array}{lll}
 v_{\mu} & 93.6\% \\
 \overline{v}_{\mu} & 5.8\% \\
 v_{e} + \overline{v}_{e} & 0.6\% \\
 \end{array}$$

• Anti-neutrino mode

$$\begin{array}{ccc}
 v_{\mu} & 15.7\% \\
 \overline{v}_{\mu} & 83.7\% \\
 v_{e} + \overline{v}_{e} & 0.6\% \\
 \end{array}$$

Phys. Rev. D79, 072002 (2009)

MiniBooNE neutrino result

6.5e20 POT

 No excess of events in signal region (E>475 MeV)

 Ruled out 2 v oscillation as LSND explanation (assuming no CP or CPT violation)

MiniBooNE neutrino result

Excess of events observed at low energy:

 $128.8 \pm 20.4 \pm 38.3 (3.0\sigma)$

Shape not consistent with 2 v oscillations

Magnitude consistent with LSND

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281

CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301.

Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017

Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009

CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303

New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363

More sterile neutrinos

- Next minimal extension 3+2 models
- Favored by fits to appearance data (hep-ph/0705.0107)
- Model allows CP violation

•
$$V_{\mu} \rightarrow V_{e} \neq \overline{V}_{\mu} \rightarrow \overline{V}_{e}$$

Anti-neutrino results

• LSND - signal

Karmen – no signal

 MiniBooNE analysis of 3.4e20 POT

(Phys. Rev. Lett. 103, 111801 (2009))

Inconclusive result

POT collection

Protons on target in anti-neutrino mode

Data stability

 Very stable throughout the run

25m Absorber

- Two periods of running with 1 & 2 absorber plates
 - 1 absorber plate 0.569E20 POT
 - 2 absorber plates 0.612E20 POT
- Good data/MC agreement in high statistics samples ($v_{_{II}}$ CCQE, NC π^{0} , ...)
- Data included in this analysis

Calibration Sources

Detector calibration

- Very stable
- For example: Michel electron mean energy within 1% since beginning of run (2002)

Events in MB

- Identify events using timing and hit topology
- Use primarily Cherenkov light

Particle ID

- Same as the one used for v_e appearance results and also for the first \overline{v}_e appearance result
- ID based on ratio of fit likelihoods under different particle hypothesis
- Similar backgrounds in neutrino and anti-neutrino run

5.66e20 Protons on Target			
	200-475	475-1250	
μ^{\pm}	13.45	31.39	_
K [±]	8.15	18.61	ntrin
K ⁰	5.13	21.2	ntrinsic $v_{_{\epsilon}}$
Other $\nu_{_{e}}$	1.26	2.05	o <
NC π^0	41.58	12.57	
$\Delta \rightarrow N\gamma$	12.39	3.37	<
dirt	6.16	2.63	Mis-ID
$\nu_{_{\mu}}$ CCQE	4.3	2.04	O
Other $\nu_{_{\mu}}$	7.03	4.22	
Total	99.45	98.08	

Intrinsic nue

- External measurements
 - HARP p+Be for π^{\pm}

- Sanford-Wang fits to world K⁺/K⁰ data *Phys. Rev. D79, 072002 (2009)*
- MiniBooNE data 20 constrained

Phys. Rev. D81, 013005 (2010)

Radiative delta

- Use NC π^0 measurement to constrain

$v_{\rm e}$ Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
π^+	0.4	0.9
$\pi^{\scriptscriptstyle{-}}$	3	2.3
K ⁺	2.2	4.7
K ⁻	0.5	1.2
K ^o	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
NC pi0 yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

- Unconstrained v_e
 background uncertainties
- Propagate input uncertainties from either MiniBooNE measurement or external data

v_e Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
π^{+}	0.4	0.9
$\pi^{\scriptscriptstyle{-}}$	3	2.3
K ⁺	2.2	4.7
K ⁻	0.5	1.2
K ^o	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
NC pi0 yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

 Uncertainty determined by varying underlying cross section model parameters (M_A, Pauli blocking, ...)

Many of these parameters measured in MiniBooNE

$\nu_{\rm e}$ Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
π^{+}	0.4	0.9
$\pi^{\scriptscriptstyle{-}}$	3	2.3
K ⁺	2.2	4.7
K ⁻	0.5	1.2
K ^o	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
NC pi0 yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

 Uncertainty in light creation, propagation and detection in the detector

Signal prediction

- Assuming only right sign oscillates ($\overline{\nu}_{\mu}$)
- Need to know wrong sign vs right sign
- $\overline{\nu}_{\!_{\mu}}$ CCQE gives more forward peaked muon

Oscillation Fit Method

Maximum likelihood fit:

$$-2\ln(L) = (x_1 - \mu_1, ...x_n - \mu_n)M^{-1}(x_1 - \mu_1, ...x_n - \mu_n)^T + \ln(|M|)$$

- Simultaneously fit
 - v_e CCQE sample
 - High statistics v_u CCQE sample
- $v_{_{\!{\scriptscriptstyle L}}}$ CCQE sample constrains many of the uncertainties:
 - Flux uncertainties

Cross section uncertainties

Sensitivity

- MiniBooNE uses E>475MeV for oscillation fits
- Energy region where expect LSND type signal
- E<475:
 - Large backgrounds
 - Big systematics
 - Not sensitive to LSND oscillation signal

Results

First nuebar appearance result

- W&C December 2008
- Using 3.4e20 POT

New Anti-neutrino data

- 5.66e20 POT
- ~70% more data

New Anti neutrino data

	200-475MeV	475-1250MeV
Data	119	120
MC	100.5±14.3	99.1±14.0
Excess	18.5±14.3	20.9±14.0
LSND Best Fit	7.6	22
Expectation from v low E excess	11.6	0
LSND+Low E	19.2	22

- Excess of events in both 200-475MeV and 475-1250MeV region
- Assuming only neutrinos produce low energy excess expect 11.6 events in 200-475MeV region

New Anti neutrino data

	200-475MeV	475-1250MeV
Data	119	120
MC	100.5±14.3	99.1±14.0
Excess	18.5±14.3	20.9±14.0
LSND Best Fit	7.6	22
Expectation from v low E excess	11.6	0
LSND+Low E	19.2	22

- Excess of events in both 200-475MeV and 475-1250MeV region
- If low E excess is due to Standard Model NC gamma-ray mechanism, eg Axial Anomaly, expect ~67 excess events in 200-475MeV

(scaling excess by the ratio of total flux in v and \overline{v} mode)

Other kinematic distributions

- 5.66e20
- \overline{v}_e sample

Null probability

- Absolute χ^2 probability of null point (background only) model independent
- Frequentist approach

	chi2/NDF	probability
E>475MeV	26.8/14.9	3.0%
* E>200MeV	33.2/18.0	1.6%

^{*} No assumption about low E excess made

Drawing contours

- Frequentist approach
- Fake data experiments on grid of $(\sin^2 2\theta, \Delta m^2)$ points
- At each point find the cut on likelihood ratio for X% confidence level such that X% of experiments below cut
- Fitting two parameters, so naively expect χ^2 distribution with 2 degrees of freedom, in reality at null it looks more like 1 degree of freedom

Fit E>475

- 5.66E20 POT
- E>475 is signal region for LSND type osc.
- Oscillations favored over background only hypotheses at 99.4% CL (model dependent)
- Best fit $(\sin^2 2\theta, \Delta m^2) = (0.9584, 0.064 \text{ eV}^2)$ $\chi^2/\text{NDF} = 16.4/12.6$ p=20.5%

E>200MeV

- 5.66E20 POT
- Oscillations favored over background only hypotheses at 99.6% CL (model dependent)
- No assumption made about low energy excess
- Best fit ($\sin^2 2\theta$, Δm^2) = (0.0066, 4.42 eV²) $\chi^2/NDF = 20.4/15.3$ p=17.1%

E>200MeV

- Subtract excess produced by neutrinos in \overline{v} mode (11.6 events)
- E<475MeV:
 - Large background
 - Not relevant for LSND type osc.
 - Big systematics
- Null χ^2 =32.8; p=1.7%

Best fit $(\sin^2 2\theta, \Delta m^2) = (0.0061, 4.42 \text{ eV}^2)$ $\chi^2/\text{NDF} = 21.6/15.3; p=13.7\%$

Future outlook

Future sensitivity

 MiniBooNE approved for a total of 1e21 POT

 Potential exclusion of null point assuming best fit signal

• Combined analysis of v_e and \overline{v}_e

Future experiments

- Microboone
 - CD1 approved
 - Address low energy excess

- Few ideas under consideration:
 - Move or build a MiniBooNE like detector at 200m (LOI arXiv:0910.2698)
 - Redoing a stopped pion source at ORNL (OscSNS http://physics.calumet.purdue.edu/~oscsns/) or Project X
 - A new search for anomalous neutrino oscillations at the CERN-PS (arxiv:0909.0355v3)

BooNE

- MiniBooNE like detector at 200m
- Flux, cross section and optical model errors cancel in 200m/500m ratio analysis
- Present neutrino low energy excess is 6 sigma statistical;
 3 sigma when include systematics
- Study L/E dependence
- Gain statistics quickly, already have far detector data

BooNE

- Better sensitivity to $\nu_{_{\! \mu}}$ ($\overline{\nu}_{_{\! \mu}}$) disappearance
- Look for CPT violation $(v_{\mu} \rightarrow v_{\mu} \neq \overline{v_{\mu}} \rightarrow \overline{v_{\mu}})$

OscSNS

- Spallation neutron source at ORNL
- 1GeV protons on Hg target (1.4MW)
- Free source of neutrinos
- Well understood flux of neutrinos

OscSNS

• $\bar{\nu}_{\rm e}$ appearance (left) and ν_{μ} disappearance sensitivity (right) for 1 year of running

Summary

 MiniBooNE analyzed anti-neutrino data corresponding to 5.66e20POT

- See 1.3σ excess of events at low (200-475MeV) energy
- See excess of events at high (475-1250MeV) energy with absolute χ^2 probability p=3.0% for null signal (model independent)

Summary

 Oscillations favored over background only hypotheses at 99.4% CL (E>475MeV)

Backup

Reminders of some analysis choices

- Data bins chosen to be variable width to minimize N bins without sacrificing shape information
 - Technical limitation on N bins used in building syst error covariance matrices with limited statistics MC
- First step in unblinding revealed a poor chi2 for oscillation fits extending below 475 MeV
 - Region below 475 MeV not important for LSND-like signal -> chose to cut it out and proceed

Reminders of some pre-unblinding choices

- Why is the 300-475 MeV region unimportant?
 - Large backgrounds from mis-ids reduce S/B
 - Many systematics grow at lower energies
 - Most importantly, small S/B so not a good L/E region to look for LSND type oscillations

E>475 MeV

1 sigma contour includes
 0.003<sin²2θ<1

Subevent structure

- $\nu_{_{\mu}}$ CCQE have 2 sub-events separated in time
- Multiple hits in ~100ns window form a subevent

